EDITGENE CO., LTD
17800 Castleton St. Ste 665. City of Industry. CA 91748
info@editxor.com
+1-833-226-3234 (USA Toll-free)
+1-224-345-1927 (USA)
+86-19120102676 (Intl)

Technical Support

Support Center
Beijing Time: Monday to Friday, 8:00 AM - 6:00 PM
Toll-Free (USA): +833-226-3234
Direct Line (USA): +1-224-345-1927
Email: techsupport@editxor.com

After-Hours Support
Beijing Time: Monday to Sunday, 8:00AM - 6:00 PM
International Line: +86-19120102676
Email: info@editxor.com

Facebook Messenger
Reach out to us on Facebook Messenger for personalized assistance and detailed information.

Linkedin
Engage with us on LinkedIn for professional inquiries, the latest blogs, discoveries, and updates on our innovative work.
FAQ
Why choose EDITGENE?
EDITGENE provides access to a comprehensive library of over 4,500 high-quality knockout (KO) cell lines, enabling researchers to save valuable time. Our custom gene knockout services are highly efficient, boasting a high positive rate while minimizing off-target effects. Clients also benefit from personalized, one-on-one support from a team of PhD experts from globally renowned institutions, ensuring top-tier service and results.
Why do researchers use KO cell lines?
Researchers use KO cell lines to investigate gene functions by observing the effects of gene deletion on cellular behavior. This helps in understanding the role of genes in various processes like cell growth, metabolism, and signal transduction. KO cell lines are vital for studying diseases like cancer, genetic disorders, and neurodegenerative diseases.
Are all types of genes suitable for KO cell lines?
Not all genes are suitable for knockout. Some gene knockouts may result in cell death or severe dysfunction, particularly for essential genes. In such cases, conditional knockouts or gene knockdowns (e.g., RNAi) may be used instead.
What role does gene knock-in play in drug development?
Gene knock-in plays a crucial role in drug development. It is used in target validation by introducing specific genes into cell lines or animal models to confirm drug target efficacy. It also aids in establishing disease models, testing drug efficacy and safety in these models, and supporting drug screening through high-throughput screening in knock-in cell lines to identify potential drug candidates. Additionally, gene knock-in helps uncover drug mechanisms, optimize drug structure, and improve dosing strategies, expediting drug development while enhancing efficacy and safety.
What are the differences between Cas9, Cas12, and Cas13?
The main differences among Cas9, Cas12, and Cas13 lie in their action mechanisms:
· Cas12 is activated to cleave ssDNA trans-cleaving after binding with guide RNA and target DNA.
· Cas13 is activated to cleave ssRNA trans-cleaving after binding with guide RNA and target RNA.
· Cas9 has not been reported to exhibit trans-cleaving activity.
· Cas12 is activated to cleave ssDNA trans-cleaving after binding with guide RNA and target DNA.
· Cas13 is activated to cleave ssRNA trans-cleaving after binding with guide RNA and target RNA.
· Cas9 has not been reported to exhibit trans-cleaving activity.
How do I choose between a whole-genome or subgenomic CRISPR library?
CRISPR libraries can be divided into whole-genome libraries and subgenomic libraries. If the goal is to perform screenings across the entire genome, a whole-genome library is the best choice. Such libraries typically contain sgRNAs targeting the entire genome. If the research focus is specific, such as targeting only particular gene families or specific signaling pathways, a subgenomic library can be chosen to reduce unnecessary screening workload and costs.
What is the difference between KO cell lines and gene knockout animal models?
KO cell lines are used for in vitro experiments, suitable for high-throughput screening and cellular studies, while gene knockout animal models are used for in vivo experiments to study gene functions within an entire organism and its interaction with the environment.

Room 501, Building D, International Business Incubator, No.3 Juquan Road, Science City, Huangpu District, Guangzhou, Guangdong, China 510663