EDITGENE CO., LTD

...
17800 Castleton St. Ste 665. City of Industry. CA 91748
...
info@editxor.com
...
+1-833-226-3234 (USA Toll-free)
+1-224-345-1927 (USA)
+86-19120102676 (Intl)

...
17800 CASTLETON ST STE 665, CITY OF INDUSTRY,CA 91748

China

  Room 501, Building D, International Business Incubator, No.3 Juquan Road, Science City, Huangpu District, Guangzhou, Guangdong, China 510663

USA

  117800 Castleton St. Ste 665 .City of Industry. CA 91748

Request A Quote

*
*
*
Please select country
*
How did you hear about us:

Technical Support

Support Center
Beijing Time: Monday to Friday, 8:00 AM - 6:00 PM
Toll-Free (USA): +833-226-3234
Direct Line (USA): +1-224-345-1927
Email: techsupport@editxor.com

After-Hours Support
Beijing Time: Monday to Sunday, 8:00AM - 6:00 PM
International Line: +86-19120102676
Email: info@editxor.com

Whatsapp
Connect with us instantly on WhatsApp for quick inquiries and real-time support.

Office WhatsApp

Welfare
Activities
Practise Knowledge
Scientifical Research

Facebook Messenger
Reach out to us on Facebook Messenger for personalized assistance and detailed information.

Linkedin
Engage with us on LinkedIn for professional inquiries, the latest blogs, discoveries, and updates on our innovative work.

FAQ

Induced pluripotent stem cells (iPSCs) are a type of cell that reprogram the somatic cells into a pluripotent state. They have characteristics similar to embryonic stem cells and can differentiate into almost all cell types in the body. Therefore, scientists can use IPSC cells to generate various cell types in vitro for research and treatment, instead of using embryonic stem cells to achieve the experimental purposes.
Gene knock-in technology involves inserting an exogenous gene sequence into a specific location within the genome for gene function studies or disease treatment. Edigene utilizes advanced gene editing tools, such as the CRISPR/Cas9 system, to guide nucleases to cut the target DNA, and employs homology-directed repair or non-homologous end joining to accurately insert the gene at the desired location, achieving efficient and precise gene knock-in.
Gene knock-in plays a crucial role in drug development. It is used in target validation by introducing specific genes into cell lines or animal models to confirm drug target efficacy. It also aids in establishing disease models, testing drug efficacy and safety in these models, and supporting drug screening through high-throughput screening in knock-in cell lines to identify potential drug candidates. Additionally, gene knock-in helps uncover drug mechanisms, optimize drug structure, and improve dosing strategies, expediting drug development while enhancing efficacy and safety.
EDITGENE’s advantages in gene knock-in technology include: Guaranteed results: With 10 years of CRISPR gene editing experience and a team of PhDs from world-renowned institutions offering one-on-one support. High precision: EDITGENE’s optimized tools reduce off-target effects, enhancing editing accuracy. High efficiency: EDITGENE’s technology platform improves knock-in success rates, accelerating experimental progress. Customized service: Tailored knock-in solutions to meet specific research or therapeutic goals.
The main difference lies in the duration and stability of gene expression: Transient cell line – The target gene is expressed temporarily in cells, typically lasting hours to days, and is suitable for short-term experiments. Stable cell line – The target gene is stably integrated into the cell genome, allowing long-term expression, suitable for extended research and production.
Gene overexpression aids in studying the function of specific genes, revealing their role within the organism. It is also commonly used in drug screening, vaccine development, and protein production. For example, by overexpressing a therapeutic protein, researchers can evaluate its efficacy in disease models.
Gene overexpression refers to using various techniques to significantly increase the expression level of a specific gene in cells or organisms. This is often achieved by introducing additional gene copies or using strong promoters to drive gene expression.
EDITGENE’s 3D single-cell printing technology employs non-contact operation, avoiding mechanical damage and background contamination, which helps maintain cell integrity and biological activity. This technology also minimizes human error in the traditional limited dilution method of monoclonal selection, ensuring the reliability of screening results.
EDITGENE utilizes industry-leading 3D single-cell printing technology, which enables precise isolation and positioning of individual cells, significantly increasing the success rate and efficiency of monoclonal screening. This technology is widely applied in biomedicine research, antibody development, drug screening, and therapeutic selection, showcasing broad application prospects in cell research.
CRISPR libraries can be divided into whole-genome libraries and subgenomic libraries. If the goal is to perform screenings across the entire genome, a whole-genome library is the best choice. Such libraries typically contain sgRNAs targeting the entire genome. If the research focus is specific, such as targeting only particular gene families or specific signaling pathways, a subgenomic library can be chosen to reduce unnecessary screening workload and costs.
Maintaining the activity of cell cultures is crucial. Cells should not be allowed to reach confluence for more than 24 hours. Frozen new cells can restore transfection activity. The optimal cell plating density varies for different cell types or applications; however, for adherent cells, a confluence of 70% to 90% or a density of 5×10^5 to 2×10^6 suspended cells/ml typically yields good transfection results. It is important to ensure that cells are not fully confluent or in a fixed phase during transfection.
The main differences among Cas9, Cas12, and Cas13 lie in their action mechanisms:
· Cas12 is activated to cleave ssDNA trans-cleaving after binding with guide RNA and target DNA.
· Cas13 is activated to cleave ssRNA trans-cleaving after binding with guide RNA and target RNA.
· Cas9 has not been reported to exhibit trans-cleaving activity.
CRISPR detection reagents:
1.The RPA isothermal amplification kit can be stored at -20°C for long-term storage.
2.Target plasmids can be stored at -20°C for long-term use.
3.Cas proteins are sensitive to repeated freeze-thaw cycles; it is recommended to aliquot into multiple tubes and store at -80°C, retrieving them as needed for experiments. For short-term use, they can be stored at -20°C.
4.crRNA is prone to degradation and should be stored at -80°C if not used in the short term.
5. Probes, being double-stranded DNA, are relatively stable and can be stored at -20°C.
1.Design an efficient crRNA sequence. Proper design and structure prediction using online resources can help select suitable crRNA to achieve good trans-cleavage activity of the Cas enzyme.
2.Choose an appropriate signal reporter substrate. Research indicates that using a 15 nt single-stranded DNA (ssDNA) as a reporter substrate maximizes the cleavage reaction rate of Cas12a, significantly enhancing the reaction rate compared to the commonly used 5-nt ssDNA.
3.Optimize reaction conditions and buffers. Adjusting the CRISPR reaction parameters, such as the ratio of Cas enzyme to crRNA, the concentration of the Cas enzyme, and the reaction temperature, can improve detection performance to some extent.
1.The design process can follow these steps:
1.Identify the target gene sequence.
2.Specify the Cas protein being used. Different Cas proteins require corresponding PAM (Protospacer Adjacent Motif) sequences; for instance, Cas12a needs the "TTTV" PAM sequence for target recognition.
3.Select the crRNA targeting region. Choose a 20 nt nucleotide sequence on the target gene that is adjacent to the PAM site and pairs with the complementary strand of the crRNA.
4.Combine the selected 20 nt target sequence (variable part) with the scaffold sequence (fixed part) to design the crRNA sequence.
5.Use online tools such as CRISPR design tools (e.g., CRISPOR, Benchling, etc.) to assist in designing crRNA. These tools can predict the efficiency and specificity of the sgRNA, helping to avoid potential off-target effects.
6.After completing the design, the synthetic crRNA sequence can be ordered from a synthetic biology company.
Contact Us
*
*
*
*
How did you hear about us: